The chaperone activity of clusterin is dependent on glycosylation and redox environment.
نویسندگان
چکیده
BACKGROUND/AIMS Clusterin (CLU), also known as Apolipoprotein J (ApoJ) is a highly glycosylated extracellular chaperone. In humans it is expressed from a broad spectrum of tissues and related to a plethora of physiological and pathophysiological processes, such as Alzheimer's disease, atherosclerosis and cancer. In its dominant form it is expressed as a secretory protein (secreted CLU, sCLU). During its maturation, the sCLU-precursor is N-glycosylated and cleaved into an α- and a β-chain, which are connected by five symmetrical disulfide bonds. Recently, it has been demonstrated that besides the predominant sCLU, rare intracellular CLU forms are expressed in stressed cells. Since these forms do not enter or complete the secretory pathway, they are not proteolytically modified and show either no or only core glycosylation. Due to their sparsity, these intracellular forms are functionally poorly characterized. To evaluate the function(s) of these stress-related intracellular forms, we investigate for the first time the impact of proteolytic cleavage, differential glycosylation and the influence of the redox environment on the chaperone activity of CLU. METHODS Non-cleavable sCLU was generated by expression from a mutant construct of sCLU, in which the furin-like proprotein convertase (PC) recognition site was modified. After purification of recombinant uncleaved sCLU from the medium of over-expressing cells, we performed chaperone activity assays to compare the activities of wild-type (cleaved) and uncleaved mutant sCLU. Additionally, this approach enabled us to investigate the role of carbohydrates, the proteolytic maturation and reducing conditions on CLU chaperone activity. Further, we characterized the differentially treated CLU forms by using MALDI-TOF, CD-spectroscopy and Western blotting in addition to the functional assay. RESULTS We show that the PC-cleavage is dispensable for sCLU chaperone activity. Moreover, our data demonstrate that while fully deglycosylated sCLU lacks chaperone activity, partially deglycosylated sCLU is still capable of solubilizing target proteins. Most importantly, we here demonstrate for the first time that uncleaved sCLU is highly sensitive towards reducing conditions. CONCLUSIONS Our study provides evidence that unglycosylated intracellular CLU forms cannot exhibit a chaperone activity compared to sCLU. Additionally, we support recent postulates that glycosylated intracellular CLU forms may act as a redox sensor under oxidative stress conditions. Furthermore, we conclude that the proteolytic cleavage of sCLU is important to maintain full chaperone activity, i.e. in the presence of necrosis.
منابع مشابه
Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis
Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...
متن کاملThe Relationship of Secretion and Activity of Recombinant Factor IX with N-Glycosylation
Background: Human coagulation factor IX (hFIX) is a glycoprotein with two N-glycosylation sites at the activation peptide. Since the activation peptide is removed in mature hFIX, the exact role of N-glycosylation is unclear. To investigate the role of N-glycosylation in the secretion and activity of hFIX, we inhibited N-glycosylation by tunicamycin in the stable Human Embryonic Kidney (HEK)- c...
متن کاملExpression and Purification of Chaperone-Active Recombinant Clusterin
Clusterin was the first described secreted mammalian chaperone and is implicated as being a key player in both intra- and extracellular proteostasis. Its unique combination of structural features and biological chaperone activity has, however, previously made it very challenging to express and purify the protein in a correctly processed and chaperone-active form. While there are multiple report...
متن کاملDependence of the anti-chaperone activity of protein disulphide isomerase on its chaperone activity.
Protein disulphide isomerase (PDI) shows chaperone and anti-chaperone activities in assisting refolding of denatured and reduced lysozyme in redox Hepes buffer, but only chaperone activity in phosphate buffer and redox Hepes buffer containing 0.1 M NaCl. In non-redox Hepes buffer its anti-chaperone activity is very weak. PDI displays its anti-chaperone activity only for those substrates showing...
متن کاملMildly acidic pH activates the extracellular molecular chaperone clusterin.
Many features of the chaperone action of clusterin are similar to those of the intracellular small heat shock proteins (sHSPs) that, like clusterin, exist in solution as heterogeneous aggregates. Increased temperature induces dissociation of some sHSP aggregates and an enhanced chaperone action, suggesting that a dissociated form is the active chaperone species. We recently reported that cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2014